skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kumchev, Angel V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Let [Formula: see text] be an integer and [Formula: see text] be a finite field with [Formula: see text] elements. We prove several results on the distribution in short intervals of polynomials in [Formula: see text] that are not divisible by the [Formula: see text]th power of any non-constant polynomial. Our main result generalizes a recent theorem by Carmon and Entin on the distribution of squarefree polynomials to all [Formula: see text]. We also develop polynomial versions of the classical techniques used to study gaps between [Formula: see text]-free integers in [Formula: see text]. We apply these techniques to obtain analogs in [Formula: see text] of some classical theorems on the distribution of [Formula: see text]-free integers. The latter results complement the main theorem in the case when the degrees of the polynomials are of moderate size. 
    more » « less
  2. null (Ed.)